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ABSTRACT 

A number of correlations describing the advent of gas blowthrough and the subsequent exit 
quality were collected and examined. A simple scaling analysis was applied to these correlations 
to identify important nondimensional groups, and the range of values for these dimensionless 
groups at nuclear power plant (NPP) and experimental scales were used to examine the 
applicability of the correlations at different scales. The performance of each of the correlations 
was also assessed over a typical parameter range for NPP and experimental conditions. The 
Gluck correlation for the onset of gas blowthrough is recommended for high pressure melt 
ejection analyses, A new model is developed for predicting the two-phase flow quality following 
the onset of gas blowthrough. Uncertainty estimates for the blowthrough correlation and the flow 
quality correlation are quantified. 
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1.0 INTRODUCTION

Direct containment heating (DCH) can occur in a nuclear power plant (NPP) if, as a result
of a core melt accident, molten material accumulates on the lower head of the reactor pressure
vessel (RPV) causing it to fail by thermally induced rupture or by expulsion of an incore
instrument guide tube. DCH is only of interest if the RPV failure occurs while the reactor
coolant system (RCS) is still at elevated pressure; in which case, lower head failure initiates
forcible ejection of melt into the reactor cavity. These processes have been termed high pressure
melt ejection (HPME).

Blowdown gas from the RCS during an NPP accident adds both mass and energy to the
containment atmosphere. Some portions of the molten material that is ejected into the reactor
cavity can be entrained, fragmented, and dispersed into the containment atmosphere. Debris
dispersed from the reactor cavity can rapidly liberate its thermal energy to the containment
atmosphere. The metallic components of the dispersed material can oxidize with steam liberating
both energy and hydrogen. These processes will heat the containment atmosphere, possibly to
the point at which steam can no longer inert the combustion of hydrogen. The resultant DCH
can lead to early failure of the reactor containment building (RCB) by overpressurization.

Large scale experiments (1: 10 linear scale) are being conducted at Sandia National
Laboratories (SNL) [Allen et al., 1991a,b,c; Allen et al., 1992a,b,c] to investigate DCH
phenomena. A detailed scaling analysisl supports this experiment program. The system level
computer code, CONTAIN [Murata et al., 1990], is being used to analyze experiments [Allen et
al., 1992c] and to perform predictions of reactor response to DCH events ~illiams et al., 1987;
Williams and Louie, 1988], The assessment of models and correlations performed in this
document supports both the scaling activities and the detailed modeling activities.

Gas blowthrough and two-phase flow following the onset of gas blowthrough have been
identified [NRC 199 1] as potentially important processes that could impact DCH loads. The
purpose of this document is

1. to identi& candidate models and correlations in the literature,
2. to assess the applicability of the models and correlations to experiment and reactor

analyses,
3. to quantify uncertainties associated with the recommended model or correlation,
4. to make recommendations for current modeling activities and future research.

1Marty Pilch and Michael D. Allen, A Scaling MethodoloN for Direct Containment Heating
with Application to the Design and Specification of an Experiment Promam for Resolving DCH
Issues, to be published, SAND91-2784, Sandia National Laboratories, Albuquerque, NM.
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2.0 GAS BLOWTHROUGH

The pressurized ejection of liquid from a tank progresses through three possible phases:
single-phase liquid discharge, two-phase gas/liquid discharge, and single-phase gas discharge.
Single-phase discharge progresses until, at some critical liquid level, a funnel-like depression
forms over the outlet hole as depicted in Figure 1. This is termed gas blowthrough. This section
addresses the critical liquid level at which gas blowthrough is initiated.

2.1 Scaling Analvsis of Gas Blowthrouph

The critical liquid level at the onset of blowthrough is postulated to be a function of the
following set of vsriables

where

hb = f {u; u,; g; p~; PI; pi a; d D; geome~}

critical liquid level at the onset of blowthrough,
velocity of liquid out the hole,
tangential velocity characterizing swirl near the hole,
acceleration due to gravity,
gas density,
liquid density,
liquid viscosity,
liquid surface tension,
diameter of the orifice through which the liquid flows, and
characteristic diameter of the tank.

(1)

This list is thought to include all variables known or postulated by the relevant literature to
influence the onset of blowthrough. Note that geometry, which refers to vessel shape and
orientation (e.g., horizontal pipes versus upright cylinders), is also postulated to influence
blowthrough. The implied assumption in formulating this list is that the onset of gas
blowthrough is dominated by hydrodynamic phenomena that are not significantly influenced by
the presence of solid particles, heat transfer, and chemical reactions. All these phenomena can
exist to some degree in a reactor application; however, the authors have subjectively judged these
concerns to be second order effects.

Application of the Buckingham Pi Theorem renders the original set nondimensional,

hb I=f qRe; Bo; !?L; ~;
}

Nr; geometiy
7 pD

(2)



Fr =_!!- Frou.ak number ,

47

~d Reywlk number ,Re=—
P

~@ 2 Bond nwber ,Bo =
0

(3)

(4)

(5)

Nr =!!! circulation number . (6)
u

This set of scaling groups is not unique because the Buckingham Pi Theorem, as a corollary,
states that any group can be replaced by products or ratios of other groups; therefore, caution
must be exercised in comparing the available models and correlations.

Representative values for the dimensionless parameters given in Equation 2 are presented
in Table 1 for typical NPP and experiment conditions. The NPP values correspond to a pump
seal LOCA (AP=6.2 MPa) induced by a station blackout accident in the Zion nuclear power plant.
Approximately 50 Mt of molten core material is assumed to be on the lower head of the RPV
when vessel failure occurs, which is assumed to be by gross rupture forming a large hole (D=l.0
m) or by tube ejection followed by ablation forming a smaller hole (D=O.35 m). The 1:10 scale
values represent typical conditions for DCH experiments conducted at the SNL Surtsey test
facility [Allen et al., 1991 a,b,c; Allen et al., 1992a, b,c]. The 1:40 scale values represent typical
conditions for DCH experiments to be conducted at Argonne National Laboratory (ANL). The
SNL and ANL experiments are guided by the NPP application for Zion or similar conditions for
the Suny NPP.

The Froude number, Fr, characterizes the rate at which disturbances are convected through
the outlet compared to the rate at which surface disturbances propagate towards the outlet, A
systematic elimination of all but one of the remaining scaling groups will leave the Froude

number as the dominant physical parameter controlling the onset of gas blowthrough.

The Reynolds number, Re, characterizes viscous effects. Gluck et al. [1966a,b] found no
appreciable effect on the gas blowthrough height for Id c Re <105. Gluck et al, [1966a,b] also
stated that the Reynolds numbers would have to lie well below the given lower bound to produce
appreciable viscosity effects on the gas blowthrough height. Table 1 shows that the Reynolds
number for DCH applications far exceeds the value where viscosity effects might be importan~
therefore, the Reynolds number can be eliminated from the set of essential scaling groups.
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The Bond number, Bo, characterizes surface tension effects. The Weber number, We,

PU 2d
We=— (7)

a

has also been used to characterize surface tension effects in some applications [Easton and
Catton, 1970]; however, the Weber number is not an independent group because it can be formed
from the product or ratio of other groups found in Equation 2. Investigations on the effect of
the Bond number [Gluck et al., 1966a,b] revealed no signiilca.nt effects for Bo >60. In a later
investigation, Gluck et al. [1966a,b] concluded that surface tension effects were probably
negligible for Bo > 5. Gluck et al. [1966a,b] also stated that the Bond number would have to
lie well below the given lower bound to produce appreciable surface tension effects on the gas
blowthrough height. Table 1 shows that the Bond number for DCH applications far exceeds the
value where surface tension effects might be important; therefore, the Bond number can be
eliminated from the set of essential scaling groups.

Swirl or vortex formation generally accelerates the onset of blowthrough (i.e.,
blow-through occurs at a greater depth h~d, [Riemann and Khan 1983, Smoglie and Riemann
1986]). The circulation number, Nr, characterizes swirl effects as the liquid approaches the
outlet. Daggett and Keulegan [1974] found that swirl effects were negligible for Nr e 0.1.
Daggett’s experiments employed spinning tanks with liquid withdrawal from a hole in the bottom.
Therefore, the application of this criteria is ambiguous to applications with crossflow or other
potential sources of vorticity. In experiment and reactor geometries, there is no crossflow at the
hole and the effects of swirl are expected to be negligible for DCH analyses. This report
intentionally focuses on those models and comelations for which swirl effects are negligible;
therefore, the circulation number can be eliminated from the list of essential scaling groups.

The density ratio, pJp, usually characterizes buoyancy effects, an effect studied by Lubin
and springer [1967]. The reported influence of the density ratio on gas blowthrough is given by

[1
0.2

hb-l

P“
1-G

P

(8)

This expression was developed for density ratios ranging from near zero to near unity. The latter

was achieved by substituting light liquids for the gas in the experiments. The Lubin and Springer
expression shows that blowthrough is only influenced by the density ratio when pJp is
comparable to unity. Table 1 shows that this certainly is not the case in DCH applications;
therefore, the density ratio can be eliminated from the list of essential scaling groups.

Gluck et al. [1966a,b] studied the effect of tank diameter on gas blowthrough,
characterized by the ratio D/d, and found that the tank diameter significantly suppressed the onset
of blowthrough when D/d c 15. Table 1 shows that DCH applications all fall in this range;
therefore, the ratio D/d remains essential for scaling blowthrough phenomena in DCH
applications. The effect of tank diameter will be discussed more fully in Section 2.4.



The geometry of interest for NPP applications is an upright cylinder where all the liquid
is expected to reside in a hemispherical bottom. There is a notable scarcity of data for
hemispherical geometry; consequently, data for other geometries will be considered as part of the
assessment. A more detailed discussion of geometry will lx delayed until Section 2.4; so for
now, geometry will remain an essential element of the scaling analysis.

The list of scaling groups characterizing the onset of gas blowthrough in DCH
applications nxluces to

h,

7 k
=f c;;

}
georneby (9)

when only the essential elements are retained. This Educed set of scaling groups forms the basis
for assessing the applicability of available correlations to DCH analyses at experiment and reactor
scales.

The scaling analysis shows that blowthrough phenomena are not preserved by strict
geometric scaling of experiments because the Froude number has an embedded length scale that
is not ratioed by any other physical length associated with the hardware. The implication is that
blowthrough is expected earlier (a greater ~d) in small scale experiments. However, when
evaluating typical DCH experiments is often found that the fraction of the melt mass remaining
in the vessel at the onset of blowthrough may not differ signitlcantly from what would be
expected at reactor scale. Two reasons for this apparent insensitivity can be identified. First,
the dependence of ~d on scale, d, is weak, being only to the l/5ti power as discussed below.
Secondly, strict geometric scaling of the liquid volumes is not usually employed in the
experiments. Consequently the initial fluid depth (ho/d) is somewhat larger in experiments than
at reactor scale, and this partially compensates for the somewhat earlier blowthrough. The exact
implications of scale distortions must be carefully evaluated for each application.

2.2 Correlations for the Onset of Gas Blowthrough

The most common form of the blowthrough correlation is given by

h~
—= C, Frcz .
d

(lo)

Although the same basic form has been used by many researchers, the reported values for the

constants Cl nd C2 tend to differ. Table 2 summarizes reported values for these constants and
indicates conditions under which each correlation applies. The constants have been separated into
two groups depending upon whether a vortex exists at the onset of gas blowthrough. In all cases
listed as vortex free, the authors explicitly state (based on visual observation) that vortex motion
did not exist. Smoglie and Reimann [1986] and Schrock et al. [1985] explicitly state that vortex
motion was observed. Anderson and Owca [1985] and Maciaszek and Memponteil [1986]
inferred the onset of blowthrough from pressure measurements, but neither made visual
observations to confm the absence (or existence) of vortices. Anderson and Owca [1985]
assumed that they had no vortex motion because Smoglie [1984] stated that small velocities past
the branch results in vortex free flow behavior. Yonomoto and Tasaka [1988] state that vortex
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motion was observed, but they considered it insignticant because their results where consistent
with Anderson and Owca [1985] and Maciaszek and Memponteil [1986] who assumed that they
were vortex free. With these considerations in mind, Table 2 shows that the constants are
consistent amongst researchers provided vortex free flow is properly distinguished from vortex
flow.

A signflcant subset of these correlations can be written in the form

(11)

which is valid whenever ~ = 0.4. This result says that blowthrough is governed by a critical
value of a single scaling group and that the depth for blowthrough is determined solely by the
volume flow rate, (), (assuming gravity is not a control variable).

Schrock et al. [1986] proposed a far more complicated expression to account for viscosity
and surface tension effects:

~r d ‘G

J

P,

“p& z = 19’4

u]2.2

h~
d

7.

rCJ
(12)

[’GFJ
This correlation was developed for 10< D/d <25 and 10< Fr <100. The geometry corresponds
to a horizontal pipe with a downward facing hole.

Gluck et al. [1966a,b] proposed yet another form for the blowthrough correlation,

h~

[)
= 0.43 D tanh Fr ‘$ (13)

-7 7

This comelation is valid for 3.2< D/d< 20 and 0.32< Fr <320. The correlation was developed

for upright cylinders with both flat and hemispherical bottoms. As such, the Gluck correlation
is the only correlation explicitly applicable to the hemispherical geometries expected in reactor
applications. The Gluck correlation limits to Equation 10, with C1=0.43 and +0.5, in the limit
when D/d is very large,

2.3 Recommended BlowthrouEh Correlation

Figure 2 compares the candidate correlations for the onset of gas blowthrough for a range
Froude numbers representative of both experiment and reactor conditions. The Gluck et al.
[1966a,b] correlation is plotted assuming that the d/D ratio approaches zero. The correlations are
banded into two groups. In the upper group, all the correlations were developed for horizontal
pipes with vortex motion. Three of the five correlations in the lower group were developed for

6



upright cylinders, but all five were vortex free. This demonstrates that the presence of vortices
has a significant effect on gas blowthrough. It does not appear that geometry (horizontal pipe,
vertical cylinder, or hemisphere) has a significant effect on blowthrough behavior. However,
comelations for vortex free flow are more appropriate for reactor applications because strong
sources of circulation (such as cross flow at a tee) are not expected in the molten material
pooled-up on the lower head of the reactor pressure vessel during HPME. Only the Gluck
comelation, which is in the lower group of vortex free correlations, is explicitly applicable to both
the flat- and hemispherical-bottomed vessels typical of experiment and NPP applications.

Only the Gluck correlation embodies the effects of tank diameter, which the scaling
analysis identifkd as potentially important for both experiment and reactor analyses. Figure 3
plots the Gluck correlation for a range of D/d representative of DCH analyses. The ratio, D/d,
has a significant effect on gas blowthrough for surprisingly large values of D/d. Failure of all
other candidate correlations to account for this effect renders them undesirable for DCH analyses.

Table 3 summarizes the applicability of the Gluck correlation to DCH analyses at both
NPP and experiment scales. The data base fully covers the range of essential parameters
necessary for DCH analyses. In summary, the Gluck correlation is recommended for DCH
analyses because

1. it explicitly applies to the geometry of interest (i.e., flat and hemispherical
bottomed cylinders),

2. it explicitly shows the effects of tank diameter, and
3. the data base spans the range of Fr and D/d values of interest to DCH analyses.

2.4 Uncertainty in the Gas Blowthrough Correlation

Quantiilcation of the uncertainty in DCH events requires quantification of the contributing
phenomenologies, in this case, the onset of gas blowthrough. Two sources of uncertainty in
applying a recommended correlation will be considered: data scatter for the recommended
correlation and differences between the recommended and competitive correlations. This section
develops a quick and easy method for combining these uncertainties. Uncertainties associated
with a potentially incomplete understanding of the blowthrough process are not considered here.

Estimates of total uncertainty follow from Figure 4. For now, the development assumes
that only two correlations are available: correlation A, the recommended correlation, and
correlation B, the competitive correlation. The results will be generalized later to accommodate

My IUUtIk Ofcompetitive comelations. Correlation A comes from a data base containing NA
data points, while correlation B comes from a database containing N* independent data points.
The total uncertainty (o,,~) could be obtained by computing the relative root-mean-square (RMS)
error of all data points from all data sets about the recommended correlation,

7



(14)

where

f(~, f(bj) = the y values of the data points (measurements) located at z and bj
respectively with the fmt belonging to data set “A” and the second
belonging to data set B, and

‘~(%), ‘*@) = the y values computed from the recommended correlation for the
data points.

Computing the total uncertainty from this expression in not practical in most situations because
the data usually is not available in a convenient form.

Expanding the term under the second summation leads to a more convenient method
estimating the combined uncertainty in applying the recommended correlation. Performing
indicated expansion

j?, k’j)-‘.(bj)] 2 = ,2,[Kbj)--W,))+k~(bj)- ‘A(bj))] 2~

yields

for
the

(15)

(16)

when the square is completed. The last summation on the right-hand-side (RHS) tends to zero
because f(bj) - fJbj) represents scatter of the data set “B” about its own correlation line. With

this substitution, the total uncertainty takes on the form

(17)

where

(3A,aB = reported standard deviations of the data sets “A” and “B” about their
respective correlations, and

6A,B = mean RMS offset between the correlations.

The latter can be estimated from comparative plots of the correlations over the parameter range
of interest.

8



This result can lx generalized to the case where “Nk” competitive correlations are
available, one of which is selectd as the recommended correlation,

where the weights

f=kNk ENN
m

m.l,N=

(18)

(19)

represent the fractional number of all data points from all comelation sets that form the basis for
correlation “k”.

Application of this procedure to an uncertainty analysis of gas blowthrough correlations
can be performed with the information supplied in Table 4. The Gluck et al. [1966a,b]
correlation is recommended for blowthrough analyses of DCH events, while the Lubin and
Springer [1967] and Reimann and Khan [1983] supply the competitive correlations. The Smoglie
and Reimann [1986] and Crowley and Rothe [1981] correlations where not considered because
insufficient information was presented in the papers. The offset for the correlations is estimated
from the maximum difference in the two correlations with the Gluck comelation evaluated for
an infinitely wide tank, which is the range of overlap in the three data bases, The estimated total
uncertainty in applying the Gluck correlation to DCH analyses is flOYO, which is less than the
scatter in Gluck’s original data. This is possible because the Lubin and Springer data set is much
more tightly banded and falls within the scatter of Gluck’s data. However, this reduced
uncertainly is justified only for large D/d values. The more conservative value of *25% (as
reported by Gluck et al.) is recommended here because it is applicable over the entire parameter
range of interest to the applications.

9



Table 1.
Typical Values of Dimensionless Parameters

Parameter NPP Scale SurWey Scale ANL Scale
1:1 1:10 1:40

Fr 7.7 -12.9 34.0 -54.6 108.1

Re 107-108 106-107 105- 106

Bo 105-106 6.3 X 103 400

P#P 0.0035 0.0062 0.0062

D/d 4.4 -12.6 4.4 -11.4 11,4

10



Table 2.
Descriptions of Gas Blowthrough Correlations

Vortex Free vortex
Reference Fr Range D/d Range Geometry

c, G c, C*

Yonomoto and Tasaka 0.91 0.4 4,5 -63.9 9.1-20 Horizontal
1988 Pipe

SmogLie and Reimann 0.62 0.4 1.03 0.4 2.7 -86.4 10.3 -33.3 Horizontal
1986 Pipe

Schroek et al. 0.82 0.5 10-100 10.2-25 Horizontal
1985 0.65 0.5 10-100 Pipe

Anderson and Owca 0.91 0.4 Horizontal
1985 Pipe

Maciaszek and Memponteil 0.91 0.4 Horizontal
1986 Pipe

Reimann and Khan 0.62 0.4 2-60 6,8 -33.3 Horizontal
1983 Pipe

Crowley and Rothe 0.62 0.4 1.2 -41.3 12.0 Horizontal
1981 Pipe

Lubin and Hurwitz 0.62 0.4 0.1-14 Cylinder
1966

Lubin and Springer 0.63 0.4 0.2-100 9.1 -71.4 Cylinder

1967

Gluck et al. 0.43 0.5 0.316-316 3.2-20 Cylinder

1966%b Hemisphere



Table 3.
Applicability of Gluck Correlation

to DCH Analyses at NPP and Experiment Scales

scaling Data NPP Scale Surtsey Scale ANL Scale
Group Base 1:1 1:10 1:40

Fr 0.32-320 7.7 -12.9 34.0 -54.6 108.1

D/d 3.2-20 4.4 -11.4 4.4 -11.4 4.4 -11.4

Geometry Flat and Hemispherical Flat and Hemispherical
Hemispherical Bottomed Hemispherical Bottomed

Bottomed Cylinder Bottomed Cylinder
Cylinder Cylinder



Table 4.
Parameters for Estimating the Overall Uncertainty

in Applying the Gluck Correlation to DCH Analyses

Reference N Cr &

Data Points RMS Scatter RMS Offset

Gluck et al, 61 0.25 0
1966a,b

Lubin and Springer 33 0.04 0.05
1967

Reimann and Khan 32 0.20 0.05

1983
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3.0 FLOW QUALITY

Section 2.0 described the analysis of gas blowthrough as a process occurring during the
first of three phases. The second of the three is a two-phase gas.lliquid discharge. Two-phase
discharge is initiated at the onset of gas blowthrough and continues until either the liquid or gas
inventories are depleted. Two-phase discharge through a hole can be described in terms of either
time-dependent void fractions or time dependent flow qualities.

The gas flow quality, X~, is defined as the ratio of gas flow rate to total flow rate,

where

M,, Mg = liquid and gas mass flow rates respectively.

In an analogous fashion, the liquid flow quality can be defined such that

x,+x =1.s

The gas flow quality is related to the void

x=s

fraction by the identity

(1 la,) W.,
l+—_

czg W,g

which is obtained by the substitutions

Ill, = (1 - ag)%

tig ❑ agw~g

(20)

(21)

(22)

(23)

(24)

where

w,,,W,g = mass flow rates of liquid and gas respectively as if each phase
flowed independently and completely filled the available flow are~

3.1 Scaling Analysis of Flow Quality

The gas flow quality is postulated to be a function of the following set of variables
where two new variables,
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(25)

% = velocity of gas out the hole, and
h = instantaneous level of liquid above the hole,

have been added to the list from Equation 1. This list is thought to include all variables known
or postulated by the relevant literature to influence flow quality. The implied assumption in
formulating this list is that the flow quality is dominated by hydrodynamic phenomena that are
not significantly influenced by the presence of solid particles, heat tiansfer, and chemical
reactions. All these phenomena can exist to some degree in a reactor application; however, the
authors have subjectively judged these concerns to be second order effects.

Application of the Buckingham Pi Theorem renders this set nondimensional,

x
{

‘f;;
1

P d Wsg. geomeoFc Re; Bo; L; —; IV+ —,.9
b

p D WJ1

(26)

The appearance of the blowthrough height (IQ does not imply that it is an independent parameter
that should have appeared in Equation 25 given above. The blowthrough height has the
dependencies shown in Equation 2, all of which are already embodied in Equation 25 also given
below; consequently, it is not an independent parameter. The use of ~ as a scaling group
simply implies that there is a particularly useful combination of the groups listed in Equation 2.
The utility of this selection is largely guided by the experience of experimenters; however, the
model developtxl in Section 3.3 provides a technical basis for the importance of this scaling
group.

A systematic reduction in the number of scaling groups performed for the onset of
blowthrough is difficult to justify for flow quality. Table 5 summarizes the dependencies that
appear in existing comelations. The ratio h,h~ is the common foundation for all the correlations.
This ratio seems to completely capture the effect of the Froude number, which dominates
correlations for the onset of blowthrough, attesting to the utility of ~ as a scaling group. Flow
quality correlations show no dependence on the Reynolds number (viscosity) or the Bond number
(surface tension), and this might be expected from the experience with blowthrough correlations.
The density ratio does appear in some of the flow quality correlations in a fashion that is not
totally negligible;ttis differs from prior expedience with Correlations for the onset of

blowthrough. The effect of tank diameter has not been studied. Only two correlations show a
dependence on gas flow rates, which seems a little odd because this term appears explicitly in
the definitions of flow quality. All the available congelations are for horizontal pipes with
downward-facing holes, Specific expressions for these comelations are summarized next.
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3.2 Correlations for Flow Quality

Schrock et al. [1985] found that the gas exit quality could be expressed solely as a
function of the depth ratio

[ ;:~+;jX, = (0.006)+ 1 -

Schrock et al. [1986] recommended a different expression,

(27)

(28)

in a later paper, but both the correlations are based substantially on the same data set. When
evaluating this expression for flow quality, the appropriate expression for ~ (Equation 10 with
constants Cl and ~ given in Table 2) that is consistent with the data base must be used.

Reimann and Khan [1983] developed a correlation for the liquid fraction at the orifice,
which after substituting into Equation 22 yields

x=
1

s
(1

.62
h

(29)

for the gas flow quality. Using an expanded data set, Smoglie and Reimann [1986] later
developed a more complicated expression for gas exit quality

x, =
1.15 1()

2.5h
~

( y,s
l+;

‘[ (11

1.15 ()‘-;
.5

b
Pl+—
P,

.5

(30)

This expression is notable because of its explicit dependence on the density ratio, When
evaluating this expression for flow quality, the- approp~ate expression for h~ (~uation 10 with
constants Cl and ~ given in Table 2) that is consistent with the data base must be used.

Yonomoto and Tasaka [1988, 1991] start with the definition of gas quality (Equation 22)
and computed the gas void fraction from the relations
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a~ = 0.9 aa O<a~<O.6

ag = 1.15 aa -0.15 0.6< aa < 1.0

(31)

(32)

(33)

w JB=?!?!
w,, pK

(34)

where the flow rates are computed from

w (35)
S8

W,l = %w (36)

[[11
0.935

P, h
& = 1 -0.37071 -

~’

(37)

When evaluating this expression for flow quality, the appropriate expression for h~ (Equation 10
with constants Cl and Cz given in Table 2) that is consistent with the data base must be used.

Geometry and tank diameter were found to be important factors influencing the onset of

gas blow-through, and it is reasonable to expect a similar importance in flow quality correlations.

However, all of the quality correlations were developed for horizontal pipes, which is not the
geometry of interest to experiment or NPP analyses of DCH events. Furthermore, tank diameter
is not explicitly accounted for in any of the correlations. Consequently, none of the flow quality
correlations is wholly suitable for DCH analyses, and there is a need for a more general
correlation or model. The next section addresses this need.

3.3 Development of a Recommended Flow @alitv Model for DCH Analyses

Pilch and Tarbell [1985] used the Gluck et al. [1966a,b] blow through correlation (which
applies to the geometries of interest and accounts for the effects of tank diameter) as a seed for
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a flow quality model. The derivation is repeated here because it has evolved somewhat from its
fmt publication,

The development of the model proceeds as follows:

1. An upper bound for the void fraction, cz~, in the hole will be derived for
hemispherical geometries,

2. The preceding step gives an upper bound for cE~only; therefore, a free parameter,
N, will be introduced into the bounding expression.

3. The development in 1 and 2 will be repeated for horizontal pipe geometry.

4. The value of N will be chosen to match available experiment results for horizontal
pipe geometry.

5. The same value of N will be applied to the model developed for hemispherical
geometry.

The premise of the model is simple: at any instant, the liquid flow area through the hole
must be sufficient to satisfy the blowthrough criteria at the current liquid depth. This follows
from a one-to-one correspondence inherent in all the blowthrough correlations in which a critical
depth for blowthrough is assigned to a specified liquid flow area characterized by a diameter, ~.
Alternatively, the blowthrough correlations can be viewed as assigning a critical liquid flow area
to a specified depth, A1,ti~= f(h). If the area of the hole is less than this critical value, then a
surface disturbance will heal itself, blowthrough does not occur, and the liquid flow area is the
total hole area. If, on the other hand, the area of the hole exceeds the critical liquid flow area,
then blowthrough is expected, and the liquid flow area will be less than the hole area by an
amount associated with the gas void,

(38)

This places a lower bound on ~ (and an upper bound on aJ if the physical state (or conceptual
picture) of blowthrough is to be maintained.

This model requires that

r

(39)

be satisfied at every instant following blowthrough. Here, h (h%) is the instantaneous depth of
the liquid above the hole and ~ (d@) is a dimension that characterized the fraction of the total
flow area of the hole that is occupied by the liquid. The model provides a minimum liquid
fraction for a specified depth. Dividing through by h, and solving for ~d yields
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[

‘> “’C’””{+’F’”’$li- p 0.5

(40)

It can be verified that this expression limits as expected; i.e., ~d=l when h/h~=l.

The term ~/d is directly related to the liquid fraction at the hole. An obvious choice is

d,

[J

A, n
ay = (1 - ay ,

>=~=
(41)

which is independent of the morphology of the gas and liquid phases. Combining this result with
Equation (40) yields

a,

[

“’C’”’’{++’””’;)]~0.5

:

(42)
= (X,mti

for the minimum liquid fraction. The bounding nature of the formulation can be relaxed by
introduction of an empirical exponent “N”,

(43)

which itself must be bounded by OCN<l. Justification for a recommended value of N=O.6 will
deferred for the moment. The best estimate gas void can then be expressed as

ag=l-

[1

arcran{+mhk0”5d*

#’ 0.5

(44)
.

the value of N) for the gasUpper bound or best estimate expressions (depending on
quality are obtained by combining Equation 43 with Equation 22. The flow rates can be
computed from
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‘Sg=cfibpb!%%l’

[ 12(P, - P2) ;
w,, = c##ib

P,

(45)

(46)

The first expression assumes separated isentropic choked flow of gas at the hole. For HPME
events (i.e., P1>>PZ and ~ 1.3) with equal gas and liquid discharge coefficients, the ratio of flow
rates limits to a simple function of the density ratio,

This model cannot be tested directly because there is no
hemispherical vessels or for vessels with a significant influence of tank

(47)

flow quality data for
diameteq however, the

premise of the model can be tested by applying the same technique to blowthrough correlations
that have been developed for horizontal cylinders. Applying the method outlined above to
Equation 10 yields

(48)

For the commonly reported value C.#.4, this expression is identical to the correlation reported
by Reimann and Khan [1983] when N=O.648.

Figure 5 conilrms the bounding nature of the model developed here (N=l .0) for horizontal
pipes (for conditions typical of the database). Note that the available correlations agree well with
each other despite large variations for the onset of blowthrough (Figure 2). Excellent agreement
with available correlations is obtained when N=0,6 is selected for the model developed here.

This value is adopted for use in DCH analyses for hemispherical tanks of varying diameter.
Clearly, there is a need for experiment data to confirm the modeling assumptions necessary to
perform DCH analyses.

The recommended correlation for gas quality (Equations 44, 45 and 46 combined with
Equation 22) is scale dependent because of the Froude number. Predicted flow qualities for
typical experiment and NPP conditions (Table 6) are compared in Figure 6. Gas quality increases
slightly with decreasing system scale.

Experience with the blowthrough correlation suggests that the gas quality is also
dependent on the tank/hole diameter ratio. For NPP scale, Figure 7 shows that the gas quality
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increases with decreasing tank/diameter ratios; however, the greater effect appears in the
correlation for the onset of blowthrough (Figure 3).

3.4 Uncertainty in the Gas Quality Model

Direct assessment of the uncertainty associated with the gas quality model is not possible
because there is no data for hemispherical systems or for systems with finite tank diameters.
However, there is considerable experience with horizontal pipes, so it will be assumed that the
uncertainty in gas quality correlations for pipes is indicative of gas quality correlations for
hemispheres with finite tank diameters.

Table 7 summarizes the information necessary to estimate the total uncertainty in applying
gas quality correlations to horizontal pipes. There me three independent data sets to choose from.
All the data sets span the same range of parameters, so the data and correlation of Smoglie and
Reimann is chosen as the recommended correlation because it lies between the other two
correlations. Applying the techniques developed in Section 2,5, the overall uncertainty due to
data scatter in the recommended correlation and existence of two competitive correlations is
estimated to be t3590, Although quantified for horizontal pipes, this estimated uncertainty is
assumed to be representative of what might be observed for hemispheres of finite diameter.
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Table 5.
Scaling Dependencies for Available Flow Quality Correlations

with Downward Facing Holes

Reference m, Fr Re BO P&/P ~ w,g~d Geometry

Schrock et al, x Horizontal
1985 Pipe

Schrock et al, x Horizontal
1986 Pipe

Riemann and Khan x x Horizontal
1983 Pipe

Smoglie and Riemann x x Horizontal
1986 Pipe

Yonomoto and Tasaka x x x Horizontal
1988 Pipe



Table 6.
Parameters for Evaluating

the Gas Quality Correlation
for Hemispherical Tanks at Different Scales

Scale Ml, D/d Fr P/Pg
(Ja)

NPP o-1 10.0 12 284 6.28

SUrtsey o-1 11.4 54 162 6.28

ANL o-1 11.4 108 162 6.28
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Table 7.
Parameters for Estimating the Overall Uncertainty

in Applying Gas Quality Correlations for Horizontal Pipes

Reference N a /i
Data Points RMS Scatter RMS Offset

Smoglie and Riemann 111 0.3 0
1986

Schrock et al. 59 0.3 0.25
1986

Riemann and Khan 19 0.3 0.40
1983
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4.0 CONCLUSIONS AND RECOMMENDATIONS

A number of correlations describing the advent of gas blowthrough and the subsequent
exit quality were collected and examined. A simple scaling analysis was applied to these
correlations to identify important nondimensional groups, and the range of values for these
dimensionless groups at NPP and experimental scales was used to examine the applicability of
the correlations at different scales. The performance of each of the correlations was also assessed
over a typical parameter range for NPP and experimental conditions.

The Gluck et al. [1966a,b] correlation is recommended for use in analytical models of
HPME at both NPP and experimental scales. The Gluck et al. [1966a,b] correlation is applicable
to hemispherical geometry, and it is the only correlation that accounts for the effect of different
tank sizes on gas blowthrough. Most importantly, it is also the only correlation developed over
a wide enough range of parameters to fully encompass the expected conditions at NPP and
experimental scales. The total expected uncertainty in the application of the Gluck et al.
[1966a,b] correlation is estimated to be approximately f15%.

A new gas quality model was developed as part of this study. The new model is based
on the Gluck et al. blowthrough correlation, and it is developed for the geometty of interest,
Furthermore, it is the only correlation that accounts for the effects of tank diameter. The total
expected uncertainty in the application of the new gas quality model is estimated to be
approximately *35%.

The recommended correlations are judged to be the best models currently available for
predicting gas blowthrough and exit quality in reactor systems. However, the lack of experiment
data to assess the performance the gas quality model developed here represents a weakness in
the model selection process. A separate effects experiment program designed to collect gas
quality data over a wide range of Fr numbers and tank-to-hole diameter ratios in an upright
hemispherical geometry would be invaluable in validating the model.
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